Inhalt
Inhalt
Bundesland, Schulart & Klasse
Bundesland, Schulart & Klasse
BW, Gemeinschaftsschule
Baden-Württemberg
Berufl. Gymnasium (AG)
Berufl. Gymnasium (BTG)
Berufl. Gymnasium (EG)
Berufl. Gymnasium (SGG)
Berufl. Gymnasium (TG)
Berufl. Gymnasium (WG)
Berufskolleg - FH
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Hauptschule
Realschule
Werkrealschule
Bayern
Fachoberschule
Gymnasium
Mittelschule
Realschule
Berlin
Gymnasium
Integrierte Sekundarschule
Brandenburg
Gesamtschule
Gymnasium
Oberschule
Bremen
Gymnasium (G8)
Oberschule (G9)
Hamburg
Gymnasium
Stadtteilschule
Hessen
Berufl. Gymnasium
Gesamtschule
Gymnasium (G8)
Gymnasium (G9)
Haupt- und Realschule
Hauptschule
Realschule
Mecklenburg-Vorpommern
Gesamtschule
Gymnasium
Niedersachsen
Gymnasium (G8)
Gymnasium (G9)
Integrierte Gesamtschule
Kooperative Gesamtschule
Oberschule
Realschule
NRW
Gesamtschule
Gymnasium
Hauptschule
Realschule
Sekundarschule
Rheinland-Pfalz
Gesamtschule
Gymnasium
Saarland
Gemeinschaftsschule
Gesamtschule
Gymnasium
Realschule
Sachsen
Gymnasium
Oberschule
Sachsen-Anhalt
Fachgymnasium
Gesamtschule
Gymnasium
Sekundarschule
Schleswig-Holstein
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Thüringen
Berufl. Gymnasium
Gemeinschaftsschule
Gesamtschule
Gymnasium
Regelschule
Klasse 9
Klasse 13
Klasse 12
Klasse 11
Klasse 10
Klasse 9
Klasse 8
Klasse 7
Fach & Lernbereich
Fachauswahl: Mathe
Mathe
Deutsch
Englisch
Bio
Chemie
Physik
Geo
Lernbereich
Grundkurs
Erweiterungskurs
Abitur (GTR)
Abitur (CAS)
Realschulabschluss
Werkrealschulabschluss
Hauptschulabschluss
VERA 8 Gymnasium
VERA 8 Realschule
VERA 8 Hauptschule
Abitur (GTR)
Prüfung
wechseln
Abitur (GTR)
Abitur (CAS)
Realschulabschluss
Werkrealschulabschluss
Hauptschulabschluss
VERA 8 Gymnasium
VERA 8 Realschule
VERA 8 Hauptschule
Mach dich schlau mit SchulLV!
Schneller lernen mit deinem SchulLV-Zugang
  • Zugang zu über 1.000 Original-Prüfungsaufgaben mit Lösungen von 2004-2019
  • Alle Bundesländer und Schularten, empfohlen von über 2.300 Schulen in Deutschland
  • Digitales Schulbuch: Über 1.700 Themen mit Aufgaben und Lösungen
  • Monatlich kündbar, lerne solange du möchtest
Jetzt Zugang freischalten!

Irrationale und reelle Zahlen

Spickzettel
Download als Dokument:PDF
Du kennst bereits
  • die natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, 4, … \},$
  • die ganzen Zahlen $\mathbb{Z} = \{…, -2, -1, 0, 1, 2, … \}$ und
  • die rationalen Zahlen $\mathbb{Q} = \left\{ \frac{p}{q} ~ \big \vert ~ p \in \mathbb{Z}, ~ q \in \mathbb{N} \right\} = \left\{ …, \frac{-1}{3}, \frac{-2}{1}, \frac{-1}{2}, \frac{-1}{1}, 0, \frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3},… \right\}.$
Die natürlichen Zahlen sind dabei eine Teilmenge der ganzen Zahlen und die ganzen Zahlen sind eine Teilmenge der rationalen Zahlen, d.h. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}.$
Nun gibt es Zahlen wie $\sqrt{3}, -\sqrt{5}, \pi $ oder $\mathrm e$ die keine rationalen Zahlen - somit auch keine ganzen oder natürlichen Zahlen - sind. Die Vereinigung dieser Zahlen und der rationalen Zahlen $\mathbb{Q}$ wird als reelle Zahlen $\mathbb{R}$ bezeichnet. Also ist jede Zahl, die du bist jetzt kennst, reell.
Beispiele
  • $-8$ ist eine ganze Zahl, somit auch automatisch eine rationale und reelle, aber keine natürliche Zahl.
  • $5$ ist eine natürliche Zahl, somit auch automatisch eine ganze, rationale und reelle Zahl.
  • $\sqrt{2}$ ist eine reelle Zahl, aber weder rational noch ganz oder natürlich.
Weiter lernen mit SchulLV-PLUS!
Jetzt Einzellizenz freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Folge uns auf
SchulLV als App