Inhalt
Smarter Learning!
Inhalt
Smarter Learning
  • Prüfungsvorbereitung
    • Original-Prüfungsaufgaben 2004-2020
    • Abitur und Abschlussprüfungen aller Schularten und Bundesländer
  • Digitales Schulbuch
    • Spickzettel, Aufgaben und Lösungen
    • Lernvideos
  • Lektürehilfen
    • Über 30 Lektüren und Pflichtlektüren
  • Mein SchulLV
    • Eigene Inhaltsverzeichnisse
    • Eigene Favoritenlisten
über 8 Fächer
Jetzt freischalten
Bundesland, Schulart & Klasse
Bundesland, Schulart & Klasse
BW, Berufl. Gymnasium (AG)
Baden-Württemberg
Berufl. Gymnasium (AG)
Berufl. Gymnasium (BTG)
Berufl. Gymnasium (EG)
Berufl. Gymnasium (SGG)
Berufl. Gymnasium (TG)
Berufl. Gymnasium (WG)
Berufskolleg - FH
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Hauptschule
Realschule
Werkrealschule
Bayern
Fachoberschule
Gymnasium
Mittelschule
Realschule
Berlin
Gymnasium
Integrierte Sekundarschule
Brandenburg
Gesamtschule
Gymnasium
Oberschule
Bremen
Gymnasium (G8)
Oberschule (G9)
Hamburg
Gymnasium
Stadtteilschule
Hessen
Berufl. Gymnasium
Gesamtschule
Gymnasium (G8)
Gymnasium (G9)
Haupt- und Realschule
Hauptschule
Realschule
Mecklenburg-Vorpommern
Gesamtschule
Gymnasium
Niedersachsen
Gymnasium (G8)
Gymnasium (G9)
Integrierte Gesamtschule
Kooperative Gesamtschule
Oberschule
Realschule
NRW
Gesamtschule
Gymnasium
Hauptschule
Realschule
Sekundarschule
Rheinland-Pfalz
Gesamtschule
Gymnasium (G8)
Gymnasium (G9)
Saarland
Gemeinschaftsschule
Gesamtschule
Gymnasium
Realschule
Sachsen
Gymnasium
Oberschule
Sachsen-Anhalt
Fachgymnasium
Gesamtschule
Gymnasium
Sekundarschule
Schleswig-Holstein
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Thüringen
Berufl. Gymnasium
Gemeinschaftsschule
Gesamtschule
Gymnasium
Regelschule
Klasse 13
Klasse 13
Klasse 12
Klasse 11
Fach & Lernbereich
Fach: Mathe
Mathe
Deutsch
Englisch
Bio
Chemie
Physik
Geschichte
Geo
Lernbereich
Digitales Schulbuch
Abitur (WTR)
Abitur bis 2016 (GTR)
Abitur bis 2016 (CAS)
Abitur bis 20...
Prüfung
wechseln
Abitur (WTR)
Abitur bis 2016 (GTR)
Abitur bis 2016 (CAS)
Inhaltsverzeichnis
Lernbereich Abitur bis 2016 (GTR)
Abi 2016
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2015
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2014
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2013
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2
Abi 2012
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2
Abi 2011
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2
Abi 2010
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2
Abi 2009
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2

Anwendungsorientierte Aufgaben 3

Aufgaben
Download als Dokument:PDFWord
3.1
Bei der Planung einer Bohrinsel geht man von einer Betriebsdauer von $20$ Jahren aus.
Die geplante Förderrate wird beschrieben durch die Funktion $f$ mit
$f(t)= \left\{ \begin{array}{p{4cm}l} -\dfrac{16}{25}t^{3}+\dfrac{24}{5}t^{2}+25;&0\leq t\leq5\\ 65;&5 < t\leq18\\ -\dfrac{65}{4}t^{2}+585t-5.200;&18 < x\leq20 \end{array} \right.$
$f(t)= \left\{ \begin{array}{p{4cm}l} -\dfrac{16}{25}t^{3}+\dfrac{24}{5}t^{2}+25;\\ 65;\\ -\dfrac{65}{4}t^{2}+585t-5.200; \end{array} \right.$
$f(t)$ ist dabei die Förderrate in Millionen Barrel pro Jahr, $t$ ist die Zeit in Jahren nach Beginn der Förderung.
3.1.1
Skizziere das Schaubild der Funktion $f$.
(2P)
 Aufgabe ab 2017 in Teil mit Hilfsmitteln
3.1.2
Bestimme den Zeitpunkt, zu dem die Förderrate am stärksten steigt.
(3P)
 Aufgabe ab 2017 in Teil mit Hilfsmitteln
3.1.3
Wie viele Barrel Öl soll die Bohranlage gemäß der Planung über die gesamte Zeitdauer fördern?
(4P)
 Aufgabe ab 2017 in Teil mit Hilfsmitteln
3.2
Von der Bohrinsel soll eine Pipeline zu einer Raffinerie verlegt werden. Jeder Kilometer, der im Wasser verlegt wird, kostet $950.000\,€$. Über Land kostet die Pipeline $420.000\,€$ pro Kilometer. Aufgrund von Umweltschutzbestimmungen darf die Pipeline auf der Landseite nur parallel oder senkrecht zur Küste verlaufen. Die Lage der Bohrinsel und der Raffinerie $R$ sowie ein möglicher Pipelineverlauf können aus der Grafik entnommen werden.
Bestimme unter den gegebenen Bedingungen die Kosten für den kostengünstigsten Pipelineverlauf.
(6P)
 Aufgabe entfällt ab 2017

(15P)
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV-PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Login
Tipps
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV-PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Login
Lösungen TI
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV-PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Login
Lösungen Casio
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV-PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Login
Folge uns auf
SchulLV als App