Inhalt
Smarter Learning!
Inhalt
Bundesland, Schulart & Klasse
Bundesland, Schulart & Klasse
BW, Berufl. Gymnasium (WG)
Baden-Württemberg
Berufl. Gymnasium (AG)
Berufl. Gymnasium (BTG)
Berufl. Gymnasium (EG)
Berufl. Gymnasium (SGG)
Berufl. Gymnasium (TG)
Berufl. Gymnasium (WG)
Berufskolleg - FH
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Hauptschule
Realschule
Werkrealschule
Bayern
Fachoberschule
Gymnasium
Mittelschule
Realschule
Berlin
Gymnasium
Integrierte Sekundarschule
Brandenburg
Gesamtschule
Gymnasium
Oberschule
Bremen
Gymnasium (G8)
Oberschule (G9)
Hamburg
Gymnasium
Stadtteilschule
Hessen
Berufl. Gymnasium
Gesamtschule
Gymnasium (G8)
Gymnasium (G9)
Haupt- und Realschule
Hauptschule
Realschule
Mecklenburg-Vorpommern
Gesamtschule
Gymnasium
Niedersachsen
Gymnasium (G8)
Gymnasium (G9)
Integrierte Gesamtschule
Kooperative Gesamtschule
Oberschule
Realschule
NRW
Gesamtschule
Gymnasium
Hauptschule
Realschule
Sekundarschule
Rheinland-Pfalz
Gesamtschule
Gymnasium
Saarland
Gemeinschaftsschule
Gesamtschule
Gymnasium
Realschule
Sachsen
Gymnasium
Oberschule
Sachsen-Anhalt
Fachgymnasium
Gesamtschule
Gymnasium
Sekundarschule
Schleswig-Holstein
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Thüringen
Berufl. Gymnasium
Gemeinschaftsschule
Gesamtschule
Gymnasium
Regelschule
Klasse 13
Klasse 13
Klasse 12
Klasse 11
Fach & Lernbereich
Fachauswahl: Mathe
Mathe
Deutsch
Englisch
Bio
Chemie
Physik
Geschichte
Lernbereich
Digitales Schulbuch
Abitur (WTR)
Abitur bis 2016 (GTR)
Abitur bis 2016 (CAS)
Abitur bis 20...
Prüfung
wechseln
Abitur (WTR)
Abitur bis 2016 (GTR)
Abitur bis 2016 (CAS)
Smarter Learning!
Schneller lernen mit deinem SchulLV-Zugang
  • Zugang zu über 1.000 Original-Prüfungsaufgaben mit Lösungen von 2004-2019
  • Alle Bundesländer und Schularten, empfohlen von über 2.300 Schulen in Deutschland
  • Digitales Schulbuch: Über 1.700 Themen mit Aufgaben und Lösungen
  • Monatlich kündbar, lerne solange du möchtest
Jetzt Zugang freischalten!
Inhaltsverzeichnis
Lernbereich Abitur bis 2016 (GTR)
Abi 2016
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2015
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2014
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2013
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2
Abi 2012
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2
Abi 2011
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2
Abi 2010
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2
Abi 2009
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Lineare Optimierung 1
Lineare Optimierung 2

Lineare Optimierung 2

Aufgaben
Download als Dokument:PDFWord
Lineare Optimierung 2  Sämtliche Aufgaben entfallen ab 2017
2.1
Auf den Malediven soll eine neue Hotelanlage entstehen. Die Investoren wollen eine Fläche von $6.400\,\text{m}^2$ mit maximal $90$ Bungalows bebauen. Zur Auswahl stehen folgende Bungalow-Typen:
Bungalow für 2 Personen Bungalow für 4 Personen Bungalow für 6 Personen
Größe $60\,\text{m}^2$ $80\,\text{m}^2$ $90\,\text{m}^2$
Einnahmen pro Tag $45\,$€ $60\,$€ $90\,$€
Bungalow für 2 Personen
Größe $60\,\text{m}^2$
Einnahmen pro Tag $45\,$€
Das geplante hoteleigene Restaurant fasst $300$ Personen, so dass Bungalows für eine Gästezahl von maximal $300$ Personen gebaut werden sollen.
2.1.1
Die Investoren planen in einem ersten Szenario nur Bungalows für $2$ und für $4$ Personen.
Zeichne das Planungsvieleck.
Wie viele Bungalows für $2$ Personen können gebaut werden, wenn die Einnahmen maximiert werden sollen?
(6P)
2.1.2
In einem zweiten Szenario sind neben den $2$- und $4$- Personen-Bungalows noch $6$- Personen-Bungalows zugelassen. Alle anderen Bedingungen bleiben gleich.
Bestimme mittels des Simplexverfahrens, wie viele Bungalows der verschiedenen Größen gebaut werden müssen, um möglichst hohe Einnahmen zu erzielen.
(4P)
2.2
Für $k\in \mathbb{R}$ ist das folgende lineare Gleichungssystem gegeben:
$\begin{array}{rlrl} 4x_{1}&+2x_{2}&+(2k-4)x_{3}&=2\\ 12x_{1}&-6x_{2}&+(3k-3)x_{3}&=3k\\ &&(k^{2}-k-6)x_{3}&=k^{2}-4 \end{array}$
$\begin{array}{rlrl} &&(k^{2}-k-6)x_{3}&=k^{2}-4 \end{array}$
Untersuche, für welche Werte von $k$ das lineare Gleichungssystem unlösbar, mehrdeutig lösbar bzw. eindeutig lösbar ist.
(5P)

(15P)
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Tipps
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Lösungen TI
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Lösungen Casio
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Folge uns auf
SchulLV als App