Inhalt
Smarter Learning!
Inhalt
Bundesland, Schulart & Klasse
Bundesland, Schulart & Klasse
NI, Kooperative Gesamtschule
Baden-Württemberg
Berufl. Gymnasium (AG)
Berufl. Gymnasium (BTG)
Berufl. Gymnasium (EG)
Berufl. Gymnasium (SGG)
Berufl. Gymnasium (TG)
Berufl. Gymnasium (WG)
Berufskolleg - FH
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Hauptschule
Realschule
Werkrealschule
Bayern
Fachoberschule
Gymnasium
Mittelschule
Realschule
Berlin
Gymnasium
Integrierte Sekundarschule
Brandenburg
Gesamtschule
Gymnasium
Oberschule
Bremen
Gymnasium (G8)
Oberschule (G9)
Hamburg
Gymnasium
Stadtteilschule
Hessen
Berufl. Gymnasium
Gesamtschule
Gymnasium (G8)
Gymnasium (G9)
Haupt- und Realschule
Hauptschule
Realschule
Mecklenburg-Vorpommern
Gesamtschule
Gymnasium
Niedersachsen
Gymnasium (G8)
Gymnasium (G9)
Integrierte Gesamtschule
Kooperative Gesamtschule
Oberschule
Realschule
NRW
Gesamtschule
Gymnasium
Hauptschule
Realschule
Sekundarschule
Rheinland-Pfalz
Gesamtschule
Gymnasium
Saarland
Gemeinschaftsschule
Gesamtschule
Gymnasium
Realschule
Sachsen
Gymnasium
Oberschule
Sachsen-Anhalt
Fachgymnasium
Gesamtschule
Gymnasium
Sekundarschule
Schleswig-Holstein
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Thüringen
Berufl. Gymnasium
Gemeinschaftsschule
Gesamtschule
Gymnasium
Regelschule
Klasse 13
Klasse 13
Klasse 12
Klasse 11
Klasse 10
Klasse 9
Klasse 8
Klasse 7
Klasse 6
Klasse 5
Fach & Lernbereich
Fachauswahl: Mathe
Mathe
Deutsch
Englisch
Bio
Chemie
Physik
Geschichte
Geo
Lernbereich
Digitales Schulbuch
Abitur eA (GTR)
Abitur eA (CAS)
Abitur gA (GTR)
Abitur gA (CAS)
Realschulabschluss
Hauptschulabschluss 10 E-...
Hauptschulabschluss 10 G-...
Hauptschulabschluss 9 E-K...
Hauptschulabschluss 9 G-K...
VERA 8 E-Kurs
VERA 8 G-Kurs
Realschulabsc...
Prüfung
wechseln
Abitur eA (GTR)
Abitur eA (CAS)
Abitur gA (GTR)
Abitur gA (CAS)
Realschulabschluss
Hauptschulabschluss 10 E-Kurs
Hauptschulabschluss 10 G-Kurs
Hauptschulabschluss 9 E-Kurs
Hauptschulabschluss 9 G-Kurs
VERA 8 E-Kurs
VERA 8 G-Kurs
Smarter Learning!
Schneller lernen mit deinem SchulLV-Zugang
  • Zugang zu über 1.000 Original-Prüfungsaufgaben mit Lösungen von 2004-2019
  • Alle Bundesländer und Schularten, empfohlen von über 2.300 Schulen in Deutschland
  • Digitales Schulbuch: Über 1.700 Themen mit Aufgaben und Lösungen
  • Monatlich kündbar, lerne solange du möchtest
Jetzt Zugang freischalten!

Wahlaufgabe 3

Aufgaben
Download als Dokument:PDF
Ein Baggersee hat eine Größe von $950~\text{m}^2$ und soll zum Baden genutzt werden. Die Wasserqualität wird regelmäßig untersucht, dabie wird eine Algenart genauer beobachtet.
Zu Beginn der Beobachtung ist der Baggersee mit einem $50~\text{m}^2$ großen Algenteppich bedeckt. Man hat festgestellt, dass sich der Algenteppich jede Woche um $50~\%$ vermehrt.
a)
Vervollständige die Tabelle.
Zeit $x$
(in Wochen)
$0 $$1 $$ 2$$3 $$4 $$5 $
Fläche $y$
(in $\text{m}^2$)
$50 $$ $$ $$168,75 $$ $$ $
Zeit $x$
(in Wochen)
Fläche $y$
(in $\text{m}^2$)
$0 $$ 50$
$1 $$ $
$2 $$ $
$3 $$168,75 $
$4$$ $
$5$$ $
2 P.
#tabelle#exponentielleswachstum#wachstum
b)
Zeichne den Graphen in ein Koordinatensystem.
(Wähle bei der $x$-Achse $1~\text{cm}$ für $1$ Woche und bei der $y$-Achse $1~\text{cm}$ für $100~\text{m}^2$.)
3 P.
#graph
c)
Bestimme, nach wie vielen Wochen der See komplett zugewachsen ist.
1 P.
d)
Stelle das Algenwachstum als Funktionsgleichung dar.
2 P.
#exponentielleswachstum
e)
Berechne die Größe des Algenteppichs $2$ Tage nach Beobachtungsbeginn
2 P.
#zeiteinheiten
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Lösungen
Download als Dokument:PDF
a)
$\blacktriangleright$  Tabelle vervollständigen
Der Algenteppich vermehrt sich jede Woche um $50~\%$. Nach einer Woche sind also $150~\%$ des ursprunglichen Algenteppichs vorhanden:
$50~\text{m}^2\cdot 150~\%=50~\text{m}^2\cdot 1,5=75~\text{m}^2$
$ 50~\text{m}^2\cdot 150~\%=75~\text{m}^2 $
Fülle so weiter die Tabelle aus:
Zeit $x$
(in Wochen)
$0 $$1 $$ 2$$3 $$4 $$5 $
Fläche $y$
(in $\text{m}^2$)
$50 $$75 $$112,5 $$168,75 $$\approx 253,13 $$\approx 379,69 $
Zeit $x$
(in Wochen)
Fläche $y$
(in $\text{m}^2$)
$0 $$ 50$
$1 $$75 $
$2 $$112,5 $
$3 $$168,75 $
$4$$\approx 253,13 $
$5$$\approx 379,69 $
b)
$\blacktriangleright$  Graphen zeichnen
Zeichne die Punkte in ein Koordinatensystem und verbinde sie zu einem Graphen:
Wahlaufgabe 3
Abb. 1: Graph
Wahlaufgabe 3
Abb. 1: Graph
c)
$\blacktriangleright$  Zeitpunkt bestimmen
Führe die Tabelle aus Aufgabenteil a) fort:
Zeit $x$
(in Wochen)
$4 $$5 $$6$$7 $$8 $$9 $
Fläche $y$
(in $\text{m}^2$)
$\approx 253,13 $$\approx 379,69 $$ \approx 569,53$$ \approx 854,30$$\approx 1281,45 $$\approx 1922,17 $
Zeit $x$
(in Wochen)
Fläche $y$
(in $\text{m}^2$)
$4 $$ \approx253,13$
$5 $$\approx379,69 $
$6 $$\approx 569,53 $
$7 $$\approx 854,30 $
$8$$\approx 1281,45 $
$9$$\approx1922,17 $
Schaue jetzt, ab welcher Woche der algenteppich größer wäre als der Baggersee. Dies ist ab Woche $9$ der Fall. Also nach $9$ Wochen ist der See komplett zugewachsen.
d)
$\blacktriangleright$  Funktionsgleichung aufstellen
Das Wachstums des Algenteppichs entspricht eienm exponentiellen Wachstum mit Anfangsbestand $W_0=50~\text{m}^2$ und Wachstumsrate $p=50~\%$. Mit der Formel für exponentielles Wachstum erhältst du:
$\begin{array}[t]{rll} y&=&W_0\cdot \left(1+\dfrac{50}{100}\right)^x \\[5pt] &=&50\cdot \left(1+0,5\right)^x \\[5pt] &=&50 \cdot 1,5^x \\[5pt] \end{array}$
e)
$\blacktriangleright$  Algenteppich nach 2 Tagen berechnen
Da $x$ in Wochen angegeben wird, musst du $2$ Tage durch Wochen ausdrücken. Da eine Woche $7$ Tage hat, ist ein Tag $\dfrac{1}{7}$ einer Woche. $2$ Tage sind dementsprechend $\dfrac{2}{7}$ einer Woche. Setze dies für $x$ in deine Funktionsgleichung ein, um die Größe des Algenteppichs zu erhalten:
$y=50\cdot 1,5^{2/7}\approx 56,14$
Nach $2$ Tagen ist der Algenteppich $56,14~\text{m}^2$ groß.
#exponentielleswachstum
Bildnachweise [nach oben]
[1]
© – SchulLV.
Weiter lernen mit SchulLV-PLUS!
Jetzt freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Folge uns auf
SchulLV als App