

Sinus und Kosinus im Einheitskreis

Aufgaben Lösungen PLUS

Alle folgenden Aufgaben beziehen sich auf Betrachtungen am **Einheitskreis**. Also dem Kreis mit Radius $\mathbf{1}$ um den Ursprung.

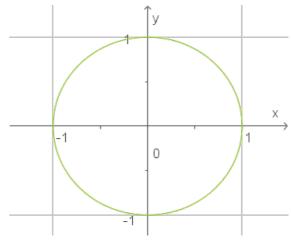


Abb. 1

Einführungsaufgabe

Zeichne den Einheitskreis in ein Koordinatensystem.

a)

Trage die Winkel $45\,^\circ$ und $100\,^\circ$ ein und lese aus deiner Zeichnung Sinus- und Kosinuswerte ab.

b)

Überprüfe dein Ergebnis aus a) mit dem Taschenrechner.

c)

Überprüfe mit einer Zeichnung, für welche Werte $\varphi \in [0\degree, 180\degree]$ die folgenden Gleichungen erfüllt sind.

$$\cos(\varphi) = 0, 5$$

$$\sin(\varphi) = 0,9$$

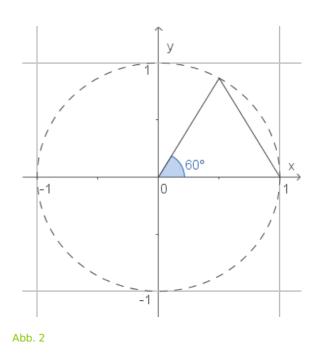
Aufgabe 1

Berechne für die gegebenen Winkel Sinus- und Kosinuswert und bestimme die kartesischen Koordinaten und die Polarkoordinaten.

φ	$\sin(arphi)$	$\cos(arphi)$	katesische Koordinaten	Polarkoordinaten
0°				
90°				
180°				
270°				

Aufgabe 2

Zeichne den Einheitskreis in ein Koordinatensystem und bestimme Sinus und Kosinuswerte für die folgenden Winkel durch Messen. Überprüfe mit dem Taschenrechner


a) b) 90° 120°

c) d) 20° 140°

e) 250° f) 310°

Aufgabe 3

Zeichne in die Abbildung ein, wie du Sinus und Kosinus ablesen kannst. Berechne anschließend die genauen Werte für $\sin(60\,^\circ)$ und $\cos(60\,^\circ)$ anhand von Überlegungen am gleichseitigen Dreieck.

Aufgabe 4

Für welche Werte $\varphi \in [0\degree, 90\degree]$ sind die folgenden Gleichungen erfüllt? Erstelle eine Zeichnung um die Frage zu beantworten.

a) b)

$$\sin(-\varphi) = -\sin(\varphi)$$

$$\cos(\varphi) = 0, 6$$

$$\cos(\varphi) = 0.8$$

$$\sin(arphi) = 0,5$$

Aufgabe 5

Fülle die Tabelle mit Hilfe deienes Taschenrechners aus.

	Wahr	Falsch
$\sin(30°)=\sin(140°)$		
$\sin(30°) = 0,5 \cdot \cos(30°)$		
$\sin(45°) = \cos(45°)$		
$\sin(60\degree) = \sqrt{3} \cdot \cos(60\degree)$		

Aufgabe 6

Begründe mit Hilfe des Satz des Pythagoras folgende Gleichung anhand einer Skizze.

$$(\sin(\varphi))^2 + (\cos(\varphi))^2 = 1$$

Bildnachweise [nach oben]

[1] © 2016 – SchulLV.

[2] © 2016 - SchulLV.