a) \blacktriangleright Grenzwerte von f(x) angeben

(2P)

Überlege dir zunächst, was es heißt, das Verhalten von f(x) für $x \to \infty$ oder $x \to -\infty$ zu untersuchen:

- Wenn du das Verhalten für $x \to \infty$ betrachtest, so fragst du: Wie entwickeln sich die Funktionswerte f(x), wenn ich für x sehr große positive Zahlen einsetze?
- Wenn du das Verhalten für $x \to -\infty$ betrachtest, so ist die Frage: Wie entwickeln sich die Funktionswerte f(x), wenn ich für x betragsmäßig sehr große negative Zahlen einsetze?

Wichtig ist dabei auch das Verhalten der e-Funktion für $x \to \pm \infty$:

$$\lim_{x\to +\infty} e^x = \infty; \qquad \lim_{x\to -\infty} e^x = 0.$$

Wenn der lineare Term $\left(\frac{1}{2}x\right)$ und der exponentielle Term (e^{x+1}) unterschiedliche Grenzwerte haben, so setzt sich der exponentielle Term durch.

b) \blacktriangleright Art und Lage des Extrempunkts von G_f ermitteln

(15P)

Du sollst die lokalen Extrempunkte von G_f bestimmen. Dazu kannst du so vorgehen:

- ullet Bestimme im ersten Schritt die ersten beiden Ableitungen f' und f'' nach der Produktregel.
- Notwendiges Kriterium: Setze f'(x) = 0 und löse die Gleichung auf. So erhältst du die potentiellen Extremstellen.
- Hinreichendes Kriterium: Setze die potentiellen Extremstellen in die zweite Ableitung f" ein. Wenn sich ein positiver Wert ergibt, so liegt ein Minimum vor; wenn sich ein negativer Wert ergibt, dann liegt ein Maximum vor.
- Setze die Extremstellen zuletzt in die Funktionsgleichung von *f* ein und berechne so die zugehörigen *y*-Koordinaten.

▶ Parallelität der Wendetangente zur Geraden h nachweisen

Du sollst zeigen, dass die Tangente, welche im Wendepunkt W an den Graphen G_f anliegt, parallel zur Geraden h mit der Gleichung $y=\frac{1}{2\mathrm{e}}x$ verläuft. Aus der Aufgabenstellung weißt du, dass G_f genau einen Wendepunkt besitzt, aber du kennst dessen Koordinaten noch nicht. Du kannst deshalb so vorgehen:

- Bestimme im ersten Schritt die Koordinaten des Wendepunkts. Da du weißt, dass G_f genau einen Wendepunkt hat, musst du das hinreichende Kriterium nicht untersuchen.
- Zwei Geraden sind parallel, wenn sie die gleiche Steigung haben. Die Steigung der Geraden h ist bekannt, du kannst sie aus der Funktionsgleichung ablesen. Berechne nun also die Steigung der Tangente tan den Graphen G_f im Wendepunkt W. Dabei gilt: Die Steigung der Tangente ist dieselbe wie die Steigung von f im Berührpunkt.

c) **Einzigen gemeinsamen Punkt nachweisen**

(7P)

Lies die Aufgabenstellung gut durch. Du sollst nicht nur zeigen, dass der Koordinatenursprung $O\left(0\mid 0\right)$ ein gemeinsamer Punkt der beiden Graphen ist, sondern dass er der **einzige** gemeinsame Punkt ist. Du kannst deshalb so vorgehen:

- Setze die Funktionsterme von f und g gleich: f(x) = g(x).
- So berechnest du die Schnittstellen der beiden Funktionen. Zeige, dass x = 0 sich als einzige Lösung ergibt und dass die zugehörige y-Koordinate auch Null ist. Dann ist der Ursprung als einziger gemeinsamer Punkt nachgewiesen.

► Gemeinsame Tangente nachweisen

Bekannt ist, dass die beiden Graphen sich im Ursprung $O(0 \mid 0)$ schneiden. Die Tangenten, die in diesem Punkt an die beiden Graphen anliegen, verlaufen also ebenfalls durch den Koordinatenursprung und schneiden hier die y-Achse. Die beiden Tangenten besitzen also auf jeden Fall mit c=0 den gleichen y-Achsenabschnitt.

Es bleibt die Frage, ob die beiden Tangenten auch die gleiche **Steigungen** haben. Die Steigung der Tangente ist dieselbe wie die Steigung der Funktion im Berührpunkt. Die Steigung einer Funktion wird dir immer durch die erste Ableitung gegeben. Du kannst so vorgehen:

- Bestimme zunächst den Term g'(x) nach der Produktregel.
- Berechne f'(0) und g'(0) und zeige, dass sich der gleiche Wert ergibt. Dann ist nachgewiesen, dass die beiden Graphen in diesem Punkt auch die gleichen Tangenten haben.

d) Flächeninhalt eines Drachens berechnen

(7P)

Die Symmetrieachse des Drachen ist die (senkrechte) Gerade x = -3. In der Abbildung ist also genau die **Hälfte** der Drachenfläche abgebildet.

Diese Fläche wird begrenzt durch die Graphen G_f , G_g und die Gerade x=-3. Dabei verläuft der Graph G_g **oberhalb** des Graphen G_f . Gesucht ist der Flächeninhalt des Drachens. Du kannst also so vorgehen:

- Berechne mit dem **Hauptsatz der Integralrechnung** den Flächeninhalt der abgebildeten Fläche.
- Verdopple diesen Flächeninhalt, weil nur die Hälfte des Drachens abgebildet ist.
- Beachte zuletzt den Maßstab: 3 LE in der Abbildung stehen für 1 m in der Realität.

e) Mögliche Drachenform zeichnen

(9P)

Die **Hälfte** der neuen Drachenform soll ein Dreieck sein, welches anschließend an der Gerade x = -3 gespiegelt wird. Einer der Eckpunkte des Dreiecks ist der Koordinatenursprung mit $O(0 \mid 0)$; ein weiterer Eckpunkt ist der Schnittpunkt des Graphen G_g mit der Geraden x = -3. Dieser Schnittpunkt ist in der Anlage bereits eingezeichnet, er ist die Spitze des alten (und auch des neuen) Drachens.

Der dritte Schnittpunkt Q soll ebenfalls auf der Geraden x=-3 liegen, also senkrecht unterhalb der Spitze. Seine y-Koordinate soll dabei zwischen 0 und 2 liegen. Wähle für dieses Beispiel einen Wert wie $y_O=1$.

► Koordinaten von *Q* berechnen

Die Koordinaten von Q sollen so bestimmt werden, dass die Drachenfläche einen Inhalt von 1 m² besitzt. Von oben weißt du: 1 m² in der Realität sind 9 FE in der Abbildung. Insgesamt soll die Drachenfläche also 9 FE groß sein.

Du kannst aufgrund der Symmetrie zur Geraden x = -3 wieder nur eine Hälfte des Drachens betrachten; wir wählen die rechte Hälfte. Diese Hälfte ist ein stumpfwinkliges **Dreieck**:

- Die **Höhe** liegt außerhalb des Dreiecks; du kannst sie auf der x-Achse einzeichnen. Unabhängig von der genauen Lage von Q ist die Höhe h = 3 LE.
- Die **Grundseite** des Dreiecks entspricht der Seite $g = \overline{PQ}$.
- Für den Flächeninhalt A des Dreiecks gilt dann: $A = \frac{1}{2} \cdot g \cdot h$

Du benötigst also die Koordinaten des Punkts P. Er ist der Schnittpunkt des Graphen G_g mit der Geraden x = -3.

Gehe z.B. so vor:

- Berechne zunächst die *y*-Koordinate von *P*.
- Bestimme dann einen Term für die Länge \overline{PQ} .
- Setze diesen Term sowie h=3 ein in die Formel zur Berechnung des Flächeninhalts A. Der Flächeninhalt des Dreiecks soll 4,5 FE betragen. Setze also A=4,5 und löse nach y_Q auf.