Inhalt
Inhalt
Bundesland, Schulart & Klasse
Bundesland, Schulart & Klasse
BW, Berufl. Gymnasium (AG)
Baden-Württemberg
Berufl. Gymnasium (AG)
Berufl. Gymnasium (BTG)
Berufl. Gymnasium (EG)
Berufl. Gymnasium (SGG)
Berufl. Gymnasium (TG)
Berufl. Gymnasium (WG)
Berufskolleg - FH
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Hauptschule
Realschule
Werkrealschule
Bayern
Fachoberschule
Gymnasium
Mittelschule
Realschule
Berlin
Gymnasium
Integrierte Sekundarschule
Brandenburg
Gesamtschule
Gymnasium
Oberschule
Bremen
Gymnasium (G8)
Oberschule (G9)
Hamburg
Gymnasium
Stadtteilschule
Hessen
Berufl. Gymnasium
Gesamtschule
Gymnasium (G8)
Gymnasium (G9)
Haupt- und Realschule
Hauptschule
Realschule
Mecklenburg-Vorpommern
Gesamtschule
Gymnasium
Niedersachsen
Gymnasium (G8)
Gymnasium (G9)
Integrierte Gesamtschule
Kooperative Gesamtschule
Oberschule
Realschule
NRW
Gesamtschule
Gymnasium
Hauptschule
Realschule
Sekundarschule
Rheinland-Pfalz
Gesamtschule
Gymnasium
Saarland
Gemeinschaftsschule
Gesamtschule
Gymnasium
Realschule
Sachsen
Gymnasium
Oberschule
Sachsen-Anhalt
Fachgymnasium
Gesamtschule
Gymnasium
Sekundarschule
Schleswig-Holstein
Gemeinschaftsschule
Gymnasium (G8)
Gymnasium (G9)
Thüringen
Berufl. Gymnasium
Gemeinschaftsschule
Gesamtschule
Gymnasium
Regelschule
Klasse 13
Klasse 13
Klasse 12
Klasse 11
Fach & Lernbereich
Fachauswahl: Mathe
Mathe
Deutsch
Englisch
Bio
Chemie
Physik
Geschichte
Geo
Lernbereich
Digitales Schulbuch
Abitur (WTR)
Abitur bis 2016 (GTR)
Abitur bis 2016 (CAS)
Abitur bis 201...
Prüfung
wechseln
Abitur (WTR)
Abitur bis 2016 (GTR)
Abitur bis 2016 (CAS)
Mach dich schlau mit SchulLV!
Mit dem digitalen Lernverzeichnis ersetzen wir Prüfungsvorbereitungsbücher sowie Schulbücher in ganz Deutschland. SchulLV bietet schnellen Zugriff auf über 1.000 Original-Prüfungsaufgaben mit Lösungen aus über 100 Abschlüssen in allen Bundesländern. Darüber hinaus besteht Zugriff auf 1.700 Themen im Digitalen Schulbuch für sämtliche Schularten von Klasse 5-13.
Neu: Zugänge deutlich ermäßigt über die Schule kaufen! Hier klicken
Inhaltsverzeichnis
Lernbereich Abitur bis 2016 (CAS)
Abi 2016
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2015
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2014
Analysis
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie
Wirtschaftliche Anwen...
Lineare Optimierung
Abi 2013
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Abi 2012
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Abi 2011
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Abi 2010
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...
Abi 2009
Analysis 1
Analysis 2
Stochastik 1
Stochastik 2
Anwendungsorientierte...
Anwendungsorientierte...
Anwendungsorientierte...
Vektorgeometrie 1
Vektorgeometrie 2
Wirtschaftliche Anwen...
Wirtschaftliche Anwen...

Anwendungsorientierte Aufgaben 3

Aufgaben
Download als Dokument:PDFWord
3.1
Die Höhe $h(t)$ eines Baumes zum Zeitpunkt $t$ wird näherungsweise beschrieben durch
$h(t)=\dfrac{35}{160\mathrm e^{-0,07632t}+1};\quad t\geq0$.
Dabei ist $t$ die Zeit in Jahren seit Pflanzung des Baums im Frühling 1930, $h(t)$ ist in m angegeben.
3.1.1
Berechne das Jahr, in dem der Baum am schnellsten gewachsen ist.
Wann war der Baum zu 75$\,$% ausgewachsen?
(5P)
 Aufgabe entfällt ab 2017
3.1.2
Bestimme das durchschnittliche Jahreswachstum des Baums der letzten 10 Jahre.
(2P)
 Aufgabe ab 2017 in Teil mit Hilfsmitteln
3.2
Im Jahr 2013 wird der Durchmesser $d(x)$ des Baumstamms in der Höhe $x$ über dem Boden modelliert durch die Funktion $d$ mit
$d(x)=-3,003\cdot10^{-9}x^{3}+9,000\cdot10^{-6}x^{2}-1,682\cdot10^{-2}x+39,73; \quad x\geq 0$.
$d(x)=-3,003\cdot10^{-9}x^{3}+…$
$d(x)$ und $x$ sind in cm angegeben.
In diesem Jahr wird der Baum gefällt. Der Schnitt wird in einer Höhe von 30$\,$cm über dem Boden angesetzt.
3.2.1
Berechne den Durchmesser der Schnittfläche.
Bestimme die Länge des abgeschnittenen Stamms, die sich aus diesem Modell ergibt.
(3P)
 Aufgabe entfällt ab 2017
3.2.2
Ermittle das Volumen des Stamms in Kubikmeter.
Kurz vor der Fällung wurde der Durchmesser des Baumstamms in der Schnitthöhe auf 40$\,$cm und die Länge des Stamms auf 30$\,$m geschätzt. Das Volumen des Stamms wurde damit schon vorab geschätzt, wobei die Form des Stamms vereinfachend als Kreiskegel angenommen wurde.
Berechne die prozentuale Abweichung des geschätzten Volumens vom oben ermittelten Volumen.
(5P)
 Aufgabe entfällt ab 2017

(15P)
Weiter lernen mit SchulLV-PLUS!
Jetzt Einzellizenz freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Tipps
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt Einzellizenz freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Lösungen TI
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt Einzellizenz freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Lösungen Casio
Download als Dokument:PDF
Weiter lernen mit SchulLV-PLUS!
Jetzt Einzellizenz freischalten
Infos zu SchulLV PLUS
Ich habe bereits einen Zugang
Zugangscode einlösen
Login
Folge uns auf
SchulLV als App