Lerninhalte in Physik
Inhaltsverzeichnis

Vorschlag A2

Untersuchungen von Emissions- und Absorptionsspektren

Die sichtbare Oberfläche der Sonne wird als Fotosphäre bezeichnet, die die Energie aus dem Innern der Sonne als kontinuierliches Spektrum nach außen abgibt. Über der Fotosphäre befinden sich die anschließende Chromosphäre und die darüber liegende Korona. Unmittelbar zu Beginn oder vor dem Ende einer totalen Sonnenfinsternis ist für ca. 4 Sekunden nur die leuchtende Schicht der Chromosphäre zu sehen. Spaltet man ihr Licht in seine Wellenlängen auf, so erscheinen helle Linien. Weil diese hellen Linien nur für kurze Zeit aufblitzen, spricht man vom „Flash-Spektrum“. Diese Spektrallinien gehen vor allem auf die Elemente Wasserstoff, Helium und Calcium zurück.
1
Zur Untersuchung des Flash-Spektrums verwendet man ein Gitter mit \(L=100\) Linien pro Millimeter (Gitterkonstante \(g=10^{-5} \,\text m\)), welches das Licht auf einen im Abstand \(e=90\,\text{mm}\) entfernten Schirm beugt.
1.1
Zeige, dass sich der Abstand \(x\) zwischen dem Hauptmaximum nullter Ordnung und den Maxima der ersten Ordnung für Licht der Wellenlänge \(\lambda\) mithilfe der Kleinwinkelnäherung mit der Formel \(x=e \cdot \lambda \cdot L\) berechnen lässt.
(4 BE)
1.2
Bei einer totalen Sonnenfinsternis konnte 1868 das bis dahin unbekannte Element Helium in der Chromosphäre nachgewiesen werden.
Berechne mithilfe der Formel aus Aufgabe 1.1 die Wellenlänge der Spektrallinie, die bei der Beobachtung auf dem Schirm als Maximum erster Ordnung im Abstand von \(5,29\,\text{mm}\) zum Hauptmaximum nullter Ordnung erscheint und gib unter Verwendung von Material 1 die Farbe der Spektrallinie an.

Material 1

Tabelle zur Definition von Wellenlängen und Farben
Wellenlängenbereich in \(\color{#f0f0f0}{\text{nm}}\) Farbe
380-420 Violett
420-490 Blau
490-570 Grün
570-600 Gelb
600-640 Orange
640-780 Rot
(5 BE)
1.3
Die Linien des Flash-Spektrums sind bei der Analyse des Sonnenlichts ohne Sonnenfinsternis als dunkle Absorptionslinien im Sonnenspektrum zu sehen (Material 2), mit Sonnenfinsternis erscheinen sie in der Analyse für kurze Zeit als helle Linien. Die Linien haben zu jedem der betrachteten Zeitpunkte die gleiche Intensität. Bei voller Sonnenstrahlung ist diese Intensität relativ zu den umgebenden Wellenlängenbereichen sehr gering, die Linien erscheinen dunkel. Bei einer Sonnenfinsternis fehlt die Intensität in den umgebenden Wellenlängenbereichen vollständig, somit erscheinen die Linien nun hell.
Erkläre diese Tatsachen und begründe, warum die dunklen Linien nicht vollständig schwarz sind.

Material 2

Dunkle Absorptionslinien im Sonnenspektrum
hessen physik abi gk 2023 vorschlag a2 material 2 dunkle absorptionslinien im sonnenspektrum
Wellenlängenangaben in \(10^{-10}\,\text m\)
(5 BE)
1.4
Zwei Absorptionslinien aus Material 2 sind auf einfach ionisiertes Calcium aus der Chromosphäre zurückzuführen. Diese Linien entstehen durch Anregungen aus dem Grundzustand auf die eng benachbarten Energiestufen A und B im Termschema von Material 3.
Ermittle mithilfe von Material 3 die Wellenlängen dieser beiden Absorptionslinien und ordne deinen Ergebnissen die entsprechenden Linien in Material 2 zu.

Material 3

Auszug aus dem Termschema von \(\text{Ca} ^{+}\)
hessen physik abi gk 2023 vorschlag a2 material 3 auszug aus dem termschema von ca+
Die Darstellung ist nicht maßstabsgerecht.
(6 BE)
1.5
1869 entdeckte unter anderem Charles Young bei einer weiteren Sonnenfinsternis in der Korona eine Spektrallinie, die auf zwölffach ionisiertes Eisen zurückgeht. Diese starke Ionisierung von Elementen ist in der Chromosphäre und der Fotosphäre nicht zu finden. Erkläre diese Tatsache mithilfe von Material 4.

Material 4

Temperaturverlauf in den äußeren Schichten der Sonne
hessen physik abi gk 2023 vorschlag a2 material 4 temperaturverlauf in den äußeren schichten der sonne
Auf der waagrechten Achse sind von innen nach außen die Schichtdicken der Chromosphäre und der Korona aufgetragen, wobei die Korona sehr weit in den Weltraum reicht.
Auf der senkrechten Achse ist die Temperatur in logarithmischer Skalierung aufgetragen.
(3 BE)
2
Zur Bestimmung des Termschemas von Natrium wird eine durchsichtige Kammer mit Natriumdampf gefüllt und mit Elektronen der Energie \(4,7\,\text{eV}\) beschossen. Mithilfe eines Detektors wird die Energie der Elektronen nach der Wechselwirkung mit den Natriumatomen bestimmt.
2.1
Berechne die Geschwindigkeit der eingeschossenen Elektronen.
(3 BE)
2.2
Die Natriumatome liegen im Dampf nur im Grundzustand vor, dessen Energie \(E_1=-5,12\,\text{eV}\) beträgt. Die eingeschossenen Elektronen führen Stöße mit den Natriumatomen aus. Vereinfachend wird zunächst angenommen, dass ein Elektron nur mit einem Natriumatom einen Stoß ausführt, bevor es im Detektor registriert wird, und dass Elektronensprünge im Atom ausschließlich von und in den Grundzustand betrachtet werden. Die Energien der Elektronen nach der Wechselwirkung mit den Natriumatomen besitzen die Werte \(4,7\,\text{eV},\) \(2,6\,\text{eV},\) \(0,95\,\text{eV}\) und \(0,35\,\text{eV}.\)
2.2.1
Begründe, dass die Elektronen nach der Wechselwirkung nur ganz bestimmte Energiewerte besitzen.
(5 BE)
2.2.2
Zeichne mithilfe der angegebenen Werte ein maßstabsgetreues Termschema von Natrium mit dem Grundzustand und den ersten drei angeregten Zuständen.
Prüfe, ob das Gas durch den Beschuss mit den Elektronen eine oder mehrere Wellenlängen im sichtbaren Bereich abgibt.
(10 BE)
2.2.3
Beurteile, ob ein Elektron beim Durchfliegen des Natriumgases auch mehrere Natriumatome aus dem Grundzustand heraus anregen könnte.
(3 BE)
2.2.4
Der Energiewert des Grundniveaus kann durch den Elektronenbeschuss mit der Energie von \(4,7\,\text{eV}\) nicht ermittelt werden.
Entscheide jeweils begründet, ob eine der folgenden Änderungen zur Ermittlung des Energiewerts des Grundzustands genutzt werden kann.
a)
Es werden Elektronen mit einer größeren Energie als \(5,12\,\text{eV}\) eingeschossen.
b)
Statt Elektronen werden Photonen mit der Energie \(2,1\,\text{eV}\) in das Gas geschossen, was der Energiedifferenz zwischen Grundzustand und erstem angeregten Zustand entspricht.
(6 BE)

Weiter lernen mit SchulLV-PLUS!

monatlich kündbarSchulLV-PLUS-Vorteile im ÜberblickDu hast bereits einen Account?