Lerninhalte in Mathe
Abi-Aufgaben LK (WTR)
Abi-Aufgaben LK (CAS)
Digitales Schulbuch
Inhaltsverzeichnis

A1 - Analysis

1
Die Bestimmung von Enzymaktivitäten in Serum, Plasma oder Harn hat in der medizinischen Diagnostik eine wichtige Bedeutung. Beispielsweise ist bei einem Herzinfarktpatienten die Serum-Enzymaktivität bestimmter Enzyme auch Tage nach dem Infarkt noch erhöht, sodass eine Spätdiagnose über die Messung der Enzymaktivität möglich ist.
Der Verlauf einer bestimmten Enzymaktivitätskurve lässt sich durch den Graphen einer Exponentialfunktion der Schar \(f_{a, b, c}\) mit \(f_{a, b, c}(t)=a+b\cdot t^2\cdot \mathrm{e}^{c\cdot t}\) \((a, b > 0\) und \(c \lt 0 )\) approximieren:
Enzymaktivitaet Funktionenschar Hessen Abi 2015
Dabei steht \(t\) für die Zeit in Tagen seit Beginn einer Erkrankung und \(f(t)\) für die Enzymaktivität in Units (Substraktumsatz pro Tag).
Bestimme die Parameter \(a\), \(b\) und \(c\) unter Berücksichtigung der folgenden Angaben:
  • Die Enzymaktivität beträgt zu Beginn 80 Units.
  • Bereits nach einem Tag ist die Enzymaktivität auf den Wert 740 Units gestiegen.
  • Drei Tage nach Beginn hat sich die Enzymaktivität wieder weitgehend normalisiert und beträgt nur noch 120 Units.
(9 BE)
2
Um einen Herzinfarkt zu diagnostizieren, misst man beispielsweise die Aktivität des Enzyms Creatin-Kinase. Bei einem bestimmten Patienten kann die Aktivitätskurve für dieses Enzym für \(0 \leq t \leq 5\) durch den Graphen der Exponentialfunktion \(f\) mit \(f(t)=100+4600\cdot t^2 \cdot \mathrm{e}^{-2\cdot t}\) angenähert werden, wobei \(t\) für die Zeit in Tagen nach dem Infarkt steht und \(f(t)\) für die Enzymaktivität in Units. Ca. 3 Tage nach einem Herzinfarkt befindet sich die Aktivität dieses Enzyms wieder im Normalbereich.
2.1
Zeige rechnerisch, dass gilt: \(f
(6 BE)
2.2
Berechne die Zeitpunkte, zu denen die Aktivitätskurve für das Enzym Creatin-Kinase am stärksten ansteigt bzw. am stärksten fällt, sowie jeweils die zugehörigen Änderungsraten.
Hinweis: Die Überprüfung der notwendigen Bedingung ist ausreichend.
(6 BE)
2.3
Die Ermittlung einer Stammfunktion von \(f\) kann durch eine bestimmte Integrationsmethode angedeutet werden:
2.3.1
Gib die Integrationsmethode an und leite durch Vervollständigung der Rechnung eine Stammfunktion \(F\) von \(f\) her.
(6 BE)
2.3.2
Bestimme das Integral \(\dfrac{1}{3}\cdot \displaystyle\int_{0}^{3} f(t) dt\) und deute das Ergebnis im Sachzusammenhang.
(4 BE)
2.4
Die Entscheidung für die Diagnose Herzinfarkt liege bei einer Enzymaktivität des Enzyms Creatin-Kinase von mindestens 192 Units. Zeige, dass der Ansatz \(100+4600\cdot t^2 \cdot \mathrm e^{-2\cdot t}=192\) zu der Gleichung \(\ln\left(t^2\right)=2\cdot t - 3,91202\) führt. Diese Gleichung lässt sich nicht algebraisch lösen.
Erläutere die folgende Darstellung und untersuche mithilfe der Graphen näherungsweise, in welcher Zeitspanne die Diagnose Herzinfarkt gestellt werden kann.
Material 3 Hessen Abi 2015
(10 BE)